Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification.
نویسندگان
چکیده
A high-potential therapy for repairing the heart post-myocardial infarction is the implantation of tissue-engineered myocardium. While several groups have developed constructs that mimic the aligned structure of the native myocardium, to date no one has investigated the particular functional benefits conferred by alignment. In this study we created myocardial constructs in both aligned and isotropic configurations by entrapping neonatal rat cardiac cells in fibrin gel. Constructs were cultured statically for 2 weeks, and then characterized. Histological staining showed spread cells that express typical cardiac cell markers in both configurations. Isotropic constructs had higher final cell and collagen densities, but lower passive mechanical properties than aligned constructs. Twitch force associated with electrical pacing, however, was 181% higher in aligned constructs, and this improvement was greater than what would be expected from merely aligning the cells in the isotropic constructs in the force measurement direction. Our hypothesis was that this was due to improved gap junction formation/function facilitated by cell alignment, and further analyses of the twitch force data, as well as Western blot results of connexin 43 expression and phosphorylation state, support this hypothesis. Regardless of the specific mechanism, the results presented in this study underscore the importance of recapitulating the anisotropy of the native tissue in engineered myocardium.
منابع مشابه
Engineered microvessels with strong alignment and high lumen density via cell-induced fibrin gel compaction and interstitial flow.
The development of engineered microvessels with clinically relevant characteristics is a critical step toward the creation of engineered myocardium. Alignment is one such characteristic that must be achieved, as it both mimics native capillary beds and provides natural inlet and outlet sides for perfusion. A second characteristic that is currently deficient is cross-sectional lumen density, typ...
متن کاملRapid formation of functional muscle in vitro using fibrin gels.
The transition of a muscle cell from a differentiated myotube into an adult myofiber is largely unstudied. This is primarily due to the difficulty of isolating specific developmental stimuli in vivo and the inability to maintain viable myotubes in culture for sufficient lengths of time. To address these limitations, a novel method for rapidly generating three-dimensional engineered muscles usin...
متن کاملTissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue.
We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical...
متن کاملNeuromuscular Junction Formation in Tissue-Engineered Skeletal Muscle Augments Contractile Function and Improves Cytoskeletal Organization
Neuromuscular and neurodegenerative diseases are conditions that affect both motor neurons and the underlying skeletal muscle tissue. At present, the majority of neuromuscular research utilizes animal models and there is a growing need to develop novel methodologies that can be used to help understand and develop treatments for these diseases. Skeletal muscle tissue-engineered constructs exhibi...
متن کاملGuided sprouting from endothelial spheroids in fibrin gels aligned by magnetic fields and cell-induced gel compaction.
An aligned engineered microvascular network is critical to the culture of thick or highly metabolic tissue in vitro due to the need for inlet and outlet sides for perfusion of the network. Contact guidance may be a way to achieve aligned networks, but the relationship between the alignment of endothelial sprouts and the alignment of extracellular matrix fibers has yet to be fully elucidated. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part A
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2009